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1. Introduction

As machine learning (ML) is increasingly used in the transportation field, we observe a tension be-

tween data-driven ML methods and classical theory-driven methods. Take travel behavior research

as an example: researchers can analyze travel mode choice by using discrete choice models (DCMs)

under the framework of random utility maximization (RUM), or using data-driven methods such

as ML classifiers without any substantial behavioral understanding. This tension creates practical

difficulty in choosing one method over the other, and prevents scholars from tackling travel behavior

problems under a unified framework. However, a closer examination reveals that the two methods

are complementary in terms of prediction, interpretation, and robustness, prompting us to ask how

to synergize them rather than treating them as disparate or even conflicting methods. Deep neural

networks (DNNs) and DCMs can be complementary because the former are more predictive [6, 5,

7, 8, 3], but less interpretable and robust [2, 9, 6, 9, 1], while the latter are less predictive, but

more interpretable and robust.

2. Methodology

To address the aforementioned challenge, this study designs a theory-based residual neural network

(TB-ResNet) that synergizes DNNs and DCMs, demonstrating that this synergy is not only fea-

sible but also desirable, leading to a simultaneous improvement in prediction, interpretation, and

robustness. We first demonstrate that DNNs align with the RUM framework by briefly recounting

McFadden (1974) and Wang et al. (2020) [10, 11]. Second, we present the TB-ResNet framework,

which augments DNNs to DCMs to fit the utility residuals with a (δ, 1− δ) formulation, resembling

the essence of the standard residual network (ResNet) [4], as shown in Figure 1. The TB-ResNet
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framework consists of a DCM utility function VT,k(zi, x̃i) and a DNN utility function VDNN,k(zi, x̃i)

weighted by δ and 1-δ:

vTB−ResNet,ik = (1 − δ)vT,ik + δvDNN,ik = (1 − δ)VT,k(zi, x̃i) + δVDNN,k(zi, x̃i) (1)

Fig. 1. Architecture of TB-ResNet. Both DCM and DNN are flexible: the DNN block uses seven
layers as an example, but it can be any depth or width; the DCM block can take any utility
specification under the RUM framework.

This TB-ResNet framework can be understood from six interwoven perspectives: architecture

design, model ensemble, gradient boosting, regularization, flexible function approximation, and

theory diagnosis. The regularization perspective can be formally demonstrated by using the state-

of-the-art statistical learning theory to illustrate the intuition that DNNs tend to be too complex

to capture the reality and DCMs tend to be too simple to do so. Then we design three instances

of TB-ResNets using multinomial logit models (MNL-ResNets), prospect theory (PT-ResNets) for

risk preference, and hyperbolic discounting (HD-ResNets) for time preference, showing that the

simple TB-ResNet framework can incorporate a wide range of DCMs that are part of the utility

maximization framework.

3. Results

3.1. Utility functions of TB-ResNets as combination of DCMs and DNNs

Figures 2 visualizes how utilities vary with input values. We can observe the complementary nature

of DNNs and DCMs by comparing only the two graphs of DNNs and DCMs on the right and left

ends of Figures 2. On one hand, the utility functions of the MNL model are very regular and

intuitive, as shown by subfigures 2a. In subfigures 2f and 2g, the utility values of choosing the bus
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mode linearly decrease as bus costs and in-vehicle travel time increase. These highly regular utility

functions in DCMs are interpretable, although it is also likely that the true utility functions can

be much more complex than the smooth and regular MNL, leading to their misspecification errors

and underfitting. However, on the other hand, the utility functions of DNNs for the MNL scenario

are very irregular and highly counter-intuitive, although they have higher prediction accuracy, as

shown by subfigure 2e. For example, in Figure 2n, the DNN predicts that the utility of using

buses first increases as the travel cost increases, violating the basic principle of economics theory.

Overall, it is critical to observe the complementary nature of DNNs and DCMs: DCMs might be

too simple and regular to capture reality, while DNNs might be too complex and irregular to do

so. TB-ResNets achieve a flexible compromise between DCMs and DNNs, the degree of which is

controlled by δ, as shown in Figures 2b, 2c, and 2d.

(a) MNL (50.6%) (b) MNL-ResNet

(δ = 10−5; 53.1%)

(c) MNL-ResNet

(δ = 0.008; 57.0%)

(d) MNL-ResNet

(δ = 0.05; 56.1%)

(e) DNN (55.8%)

(f) Cost (g) IVT (h) Cost (i) IVT (j) Cost (k) IVT (l) Cost (m) IVT (n) Cost (o) IVT

Fig. 2. Utility functions of MNL-ResNets, MNL, and DNNs. Upper row: visualization of 2D

utility functions, and percentages in the parentheses represent the prediction accuracy. Lower row:

visualization of 1D utility functions, and every pair of figures on the lower row correspond to the

figure directly above on the upper row.

3.2. Prediction, Interpretation, and robustness of TB-ResNets over DCMs and DNNs

As summarized in Table 1, our empirical results can also demonstrate that TB-ResNets are more

predictive, interpretable, and robust overall than pure DCMs and DNNs, although several ex-

ceptions exist. Compared to DNNs, TB-ResNets are more predictive, interpretable, and robust

because the DCM component in TB-ResNets can stabilize the utility functions and regularize the

DNN component. Compared to DCMs, TB-ResNets are more predictive and interpretable because

richer utility functions are augmented to the skeleton DCM by the DNN component in TB-ResNets.

The TB-ResNets are formulated with a flexible (δ, 1− δ) weighting, thus taking advantage of both

the simplicity of the DCMs and the richness of the DNNs, preventing the underfitting of the DCMs
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and the overfitting of the DNNs, and providing insights into the completeness of the DCM theories.

Our findings are consistent across the three scenarios (MNL, PT, and HD). While exceptions exist

in the PT scenario and the comparison to DCMs for robustness evaluation, our main findings hold

from both theoretical and empirical perspectives.

Models Prediction Interpretability Robustness

Compared to DNNs Marginal improvement
(by stabilization and

regularization)

Significant improvement
(by stabilization and

regularization)

Significant improvement
(by stabilization and

regularization)

Compared to DCMs Significant improvement
(by augmenting and

enriching utility function)

Significant improvement
(by augmenting and

enriching utility function)

No improvement

Table 1: Comparison of TB-ResNets to DCMs and DNNs

4. Conclusion

Researchers often treat data-driven and theory-driven models as two disparate or even conflicting

methods in travel behavior analysis. However, the two methods are highly complementary because

data-driven methods are more predictive but less interpretable and robust, while theory-driven

methods are more interpretable and robust but less predictive. Using their complementary nature,

this study designs a theory-based residual neural network (TB-ResNet) framework, which synergizes

discrete choice models (DCMs) and deep neural networks (DNNs) based on their shared utility

interpretation. The TB-ResNet framework is simple, as it uses a (δ, 1-δ) weighting to take advantage

of DCMs’ simplicity and DNNs’ richness, and to prevent underfitting from the DCMs and overfitting

from the DNNs. This framework is also flexible: three instances of TB-ResNets are designed

based on multinomial logit model (MNL-ResNets), prospect theory (PT-ResNets), and hyperbolic

discounting (HD-ResNets), which are tested on three data sets. Compared to pure DCMs, the TB-

ResNets provide greater prediction accuracy and reveal a richer set of behavioral mechanisms owing

to the utility function augmented by the DNN component in the TB-ResNets. Compared to pure

DNNs, the TB-ResNets can modestly improve prediction and significantly improve interpretation

and robustness, because the DCM component in the TB-ResNets stabilizes the utility functions

and input gradients.

Overall, this study demonstrates that it is both feasible and desirable to synergize DCMs and

DNNs by combining their utility specifications under a TB-ResNet framework. This study high-

lights a synergetic perspective and a comprehensive model evaluation based on three criteria, so

future studies could take the complementarity of the data-driven and theory-driven methods be-

yond simple prediction comparison. We hope that this work can pave the way for future studies

to create more links between the data-driven and theory-driven methods, because their comple-

mentary nature provides immense opportunities, their underlying perspectives are interwoven, and

their synergy can overcome their respective weaknesses.
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